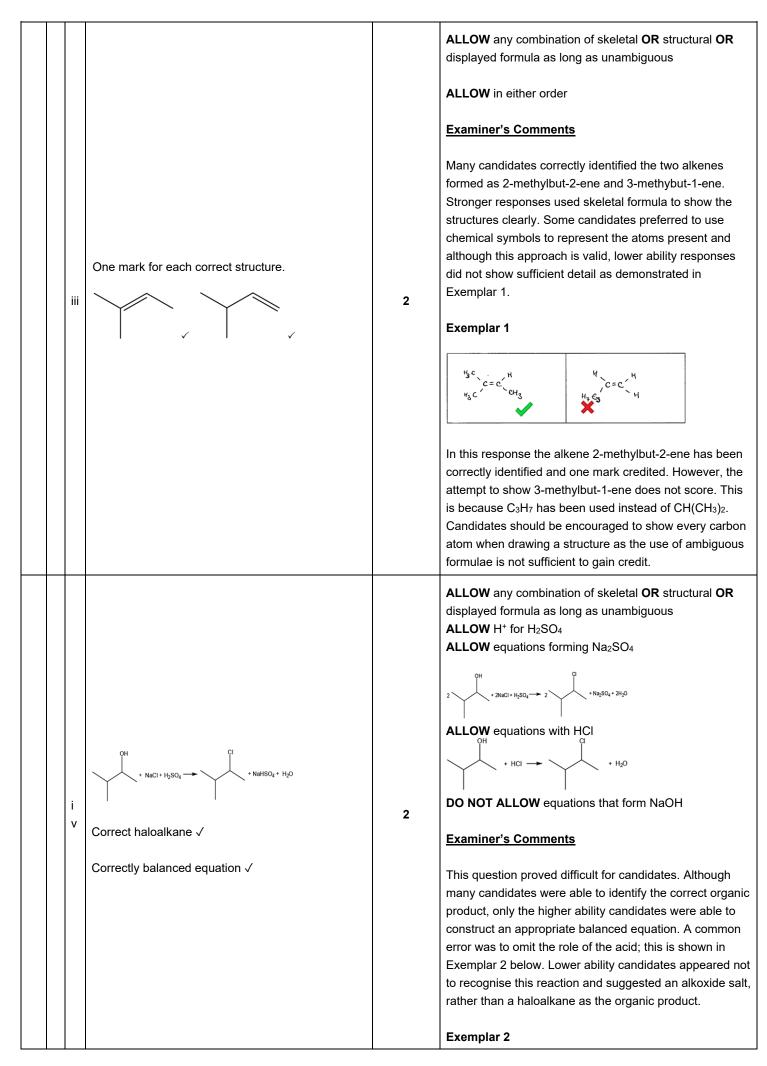
Mark scheme – Alcohols


Question	Answer/Indicative content	Marks	Guidance
1 i	Reagents K2Cr2O7 AND acid AND reflux \checkmark Equation HO(CH2)4OH + 4[O] \rightarrow HOOC(CH2)2COOH + 2H2O [O] AND H2O \checkmark Correctly balanced equation \checkmark	3 (AO1.1) (AO2.5) (AO2.6)	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ^{2–} ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ , <u>Examiner's Comments</u> Many candidates did not correctly balance this equation or missed water as a product entirely.
ii	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & \end{array}{} & \begin{array}{c} & \end{array}{} & \end{array}{} \\ & \begin{array}{c} & \end{array}{} & \end{array}{} & \end{array}{} \\ & \begin{array}{c} & \begin{array}{c} & \end{array}{} & \end{array}{} \\ & \begin{array}{c} & \end{array}{} & \end{array}{} \\ & \begin{array}{c} & \end{array}{} \\ & \begin{array}{c} & \end{array}{} \\ & \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} & \begin{array}{c} & \end{array}{} \\ \end{array}{} \end{array}{} \\ \begin{array}{c} & \begin{array}{c} & \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{}$	2 (AO2.1×2)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ + on H atoms of CH ₂ group ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e. O-H hydrogen/H bond $H^{\delta +}$ $O(CH_2)_2-C$ HO $O-H$ IF diagram is not labelled, ALLOW hydrogen bond/H bond from text Examiner's Comments Candidates who answered this question well had clear, labelled diagrams. Too often, labels, dipoles and lone pairs were missing.
	Total	5	
2	C, E AND F $\checkmark \checkmark$ Three correct alcohols \rightarrow 2 marks Two correct alcohols \rightarrow 1 mark	2 (AO1.1×1) (AO2.1×1)	If >2 alcohols are shown lose 1 mark for each incorrect response <u>Examiner's Comments</u> Generally this was well answered. However, some candidates only gave two responses where three were required, presumably because it was worth two marks.
	Total	2	

				ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
				DO NOT ALLOW STICKS IN STRUCTURES
				Examiner's Comments
3	i	$A \longrightarrow \bigvee_{OH}^{O} \rightarrow OH$ $B \longrightarrow NONE \checkmark$	3 (AO2.5) (AO1.2)	Part 25(a)(i) discriminated extremely well and rewarded well-prepared candidates. Most candidates recognised that B is a tertiary alcohol and will not react with acidified dichromate. The structure from A was often shown as an aldehyde rather than a carboxylic acid. It was also common for candidates to replace the OH group of A with the carboxyl COOH group, gaining a carbon atom in the chain in the process. The ketone oxidation product from C proved to be easier.
		$c \rightarrow \checkmark_{0}$	(AO2.5)	Part 25(a)(ii) proved to be difficult. Candidates need to be careful in identifying the longest carbon chain to derive the stem of an organic name. Many candidates thought that alcohol C was a branched propanol, with 1- methylpropan-1-ol being seen very often instead of the correct name of butan-2-ol. In part 25(a)(iii), less than half the candidates wrote a correctly-balanced equation for this reaction. Although $4CO_2$ and $5H_2O$ were usually seen for the products, oxygen was usually seen as $61/_2O_2$, rather than $6O_2$. Candidates need to look very closely at the formula of the organic compound so that the O in C ₄ H ₁₀ O is accounted for in the balancing.
				IGNORE lack of hyphens, or addition of commas
				ALLOW butane-2-ol
				DO NOT ALLOW butan-3-ol OR but-2-ol
	ii	butan-2-ol √	1 (AO1.2)	Examiner's Comments Part 25(a)(i) discriminated extremely well and rewarded well-prepared candidates. Most candidates recognised that B is a tertiary alcohol and will not react with acidified dichromate. The structure from A was often shown as an aldehyde rather than a carboxylic acid. It was also common for candidates to replace the OH group of A with the carboxyl COOH group, gaining a carbon atom in the chain in the process. The ketone oxidation product from C proved to be easier. Part 25(a)(ii) proved to be difficult. Candidates need to be careful in identifying the longest carbon chain to derive the stem of an organic name. Many candidates thought that alcohol C was a branched propanol, with 1- methylpropan-1-ol being seen very often instead of the

				correct name of butan-2-ol. In part 25(a)(iii), less than half the candidates wrote a correctly-balanced equation for this reaction. Although $4CO_2$ and $5H_2O$ were usually seen for the products, oxygen was usually seen as $61/_2O_2$, rather than $6O_2$. Candidates need to look very closely at the formula of the organic compound so that the O in C ₄ H ₁₀ O is accounted for in the balancing.
		$C_4H_{10}O + 6O_2 \rightarrow 4CO_2 + 5H_2O \checkmark$	1 (AO2.6)	 Examiner's Comments Part 25(a)(i) discriminated extremely well and rewarded well-prepared candidates. Most candidates recognised that B is a tertiary alcohol and will not react with acidified dichromate. The structure from A was often shown as an aldehyde rather than a carboxylic acid. It was also common for candidates to replace the OH group of A with the carboxyl COOH group, gaining a carbon atom in the chain in the process. The ketone oxidation product from C proved to be easier. Part 25(a)(ii) proved to be difficult. Candidates need to be careful in identifying the longest carbon chain to derive the stem of an organic name. Many candidates thought that alcohol C was a branched propanol, with 1-methylpropan-1-ol being seen very often instead of the correct name of butan-2-ol. In part 25(a)(iii), less than half the candidates wrote a correctly-balanced equation for this reaction. Although 4CO₂ and 5H₂O were usually seen for the products, oxygen was usually seen as 61/₂O₂, rather than 6O₂. Candidates need to look very closely at the formula of the organic compound so that the O in C₄H₁₀O is accounted for in the balancing.
		Total	5	
4	i	$H_{3}C \longrightarrow H$ $H_{3}C \longrightarrow H$ $H_{3}C \longrightarrow CH_{3}$ $H_{3}C \longrightarrow CH_{0}$	3	ALLOW correct structural OR displayed OR skeletal formulae OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW CH ₃ - ALLOW 1 mark for G AND H combined is structures are correct but in wrong boxes <u>Examiner's Comments</u>
				Part (i) discriminated extremely well and rewarded the well-prepared candidate. Compound F proved to be the most difficult option, with a large variety of responses, many appearing to be guesses. Candidates were much

				more successful with compounds G and H , although these were sometimes shown in reverse order. A significant number of candidates drew structures containing C=C or C=O bonds in which the carbon atom had five bonds. Candidates should check drawing of organic structures carefully to ensure that all carbon atoms have four bonds. There were some good responses for part (ii), with many clearly shown and correct systematic names.
	ii	2-methylpropan−1−ol √ Both numbers required	1	IGNORE absence of hyphen or use of dots or commas as separators DO NOT ALLOW 2-methylprop-1-ol OR 2-methpropan-1-ol OR 2-methypropan-1-ol
		Total	4	
				ANNOTATE WITH TICKS AND CROSSES ALLOW ORA throughout
				ALLOW heptane has more electrons
		Heptane compared to hexane heptane (has a longer chain so) has more points of contact / more surface interaction (between molecules) √ heptane has stronger/more induced dipole(–dipole) interactions √		IGNORE IDID ALLOW stronger/more London forces IGNORE van der Waals' forces/VDW for induced dipole–dipole interactions (ambiguous as this term refers to both permanent dipole– dipole interactions and induced dipole–dipole interactions) IGNORE 'pentan-1-ol can form hydrogen bonds with
		Pentan-1-ol compared to heptane and/or hexane		water'
5		pentan-1-ol has hydrogen bonds that are strong(er than induced dipole–dipole interactions) OR	4	ALLOW 'more energy to break intermolecular forces' if intermolecular forces are not stated.
		(alcohols have) hydrogen bonds and induced dipole(-dipole) interactions/London forces √		IGNORE it is harder to break the intermolecular forces <i>no reference to energy)</i> IGNORE more energy needed to separate molecules
		Energy required to break forces		IGNORE more energy is needed to break bonds
		More energy is required to break induced dipole(– dipole) interactions in heptane than hexane OR More energy is required to break hydrogen bonds ✓		Examiner's Comments This question was answered well with most candidates scoring three or four marks. Examiners were impressed by the number of responses that accurately referred to induced dipole-dipole interactions or London forces rather than van der Waals' forces, which is ambiguous. Some responses lacked detail, as demonstrated in Exemplar 10. Exemplar 10

					Betton-1-d has be lugions boiling paint because Be CH gifter can fund on lugions bailing paint because Heptone has a biogres bailing paint because It has a longer chails bailing paint because It has a longer chails base for a longer base for a longer Wither was and more index dipole index dipole base for a longer base for a longer Mither was and more index dipole index dipole index dipole base for a longer Mither was and more index dipole index dipole index dipole base for a longer Mither was and more index dipole index dipole index dipole base for a longer Mither was and more index dipole index dipole index dipole base for a longer This response attributes the higher boiling point of pertane consequently, the first paragraph only scores marking point four and not marking point three. The higher boiling point of heptane compared to hexane is explained by a correct comparison of the induced dipole-dipole interactions present in these compounds, so marking point two was achieved. However, the justification for the difference in intermolecular forces lack
			Total	4	
6	а	i	3-methylbutan-2-ol √	1	IGNORE lack of hyphens or addition of commas ALLOW 3-methylbutane-2-ol DO NOT ALLOW 2-methylbutan-3-ol OR 3-methylbut-2-ol OR 3-methylbutan-2-ol OR 3-methylbutan-2-ol OR 3-methylbutan-2-ol R Examiner's Comments The majority of candidates were able to correctly name alcohol A as 3-methylbutan-2-ol. A significant number of responses used incorrect numbering and suggested 2- methylbutan-3-ol as the name.
		ii	(CH₃)₂CHCHOHCH₃ √	1	ALLOW brackets around OH e.g. (CH ₃) ₂ CHCH(OH)CH ₃ ALLOW any unambiguous structural formula e.g. CH ₃ CH(CH ₃)CHOHCH ₃ CH ₃ CH(CH ₃)CH(CH ₃)OH Examiner's Comments Most candidates were able to show a correct structural formula of alcohol A.

					$\bigvee^{OH} + N_{\alpha}CI \longrightarrow \bigvee^{CI} + N_{\alpha}OH $ This type of response was seen frequently by examiners. The candidate has drawn the correct structure of the haloalkane formed and scores the first mark. However, the response fails to recognise that the reaction occurs under acidic conditions and omits the sulfuric acid from the equation.
					 ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any vertical bond to the tertiary OH group e.g. ALLOW
	b		$H_{3}C \xrightarrow{CH_{3}}_{OH} \xrightarrow{H}_{OH} \xrightarrow{H}_{H} \xrightarrow{H}_{IOI} \xrightarrow{H}_{3}C \xrightarrow{CH_{3}}_{OH} \xrightarrow{OH}_{OH} \xrightarrow{2H_{2}O}$ Correct organic product \checkmark	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			Rest of equation √		Examiner's Comments
					This question required candidates to apply their knowledge of the oxidation of alcohols to complete the equation for the complete oxidation of compound B. This question discriminated well. Many candidates correctly identified the organic product but only the higher ability candidates could complete the equation. A common error was to omit water as a product of the reaction.
			Total	8	
			Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Correctly labelled diagram of reflux apparatus that works, with no safety problems AND An appreciation of most of the purification steps required to gain a pure sample		Indicative scientific points may include: Apparatus set up for reflux: • round-bottom/pear shaped flask • heat source • condenser Detail: water flow in condenser bottom to top; open system.
7		i	There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Labelled diagram of apparatus (either reflux or distillation) but with safety/procedural problems OR clear diagram of reflux apparatus without labelling AND Some details of further purification steps	6	 Purification Use of a separating funnel to separate organic and aqueous layers Detail: Collect lower organic layer density greater Drying with an anhydrous salt, Detail: e.g. MgSO₄, CaCl₂, etc. Redistillation Detail: Collect fraction distilling at 102°C.

There is a line of reasoning presented with some	Examiner's Comments
structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks)	Candidates were not prepared to answer this type of question and the diagrams were hard to give credit to. Many had significant safety implications such as open
Diagram of apparatus (reflux OR separation OR distillation) drawn with no labelling OR labelled diagram with significant safety/procedural AND / OR Few or imprecise details about further purification stages	beakers of butan-1-ol being heated by a Bunsen burner. Most mis-read the question and just outlined the method for purification and struggled to recall the practical details. Very few candidates mentioned the use of anhydrous salts, referring instead to 'boiling off' the water.
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	
0 marks	
No response or no response worthy of credit.	
	Exemplar 4
	Reflux Alcohol → Halpalkane –
	10 5 (a) 1-Bromobutane is an organic liquid with a boiling point of 102°C.
	A student prepares 1-tromobutane by reacting butan-t-ol with sulfuric acid and socium bromide. The student boils the mixture for one hour. The equation is shown below.
	$\label{eq:constraint} \begin{split} & \mbox{1-box-modulations} \\ & \mbox{$CH_2CH_2CH_2CH_4CH+} + H^+ + Bc^- \rightarrow CH_2CH_2CH_4CH_3R^+ + I_{2}O \\ \\ & \mbox{$The student obtains a reaction mixture constrainting an organic layer (density = 1.27gcm^-3) $} \end{split}$
	and an aqueous loyer (density = 1.00 gcm ⁻³). (0)* Draw a labeled diagram to show how you would safely set up apparatus for the proparation. Outline a method to obtain a pure sample of 1-bronnobutana from the
	Water on the Standard Control of Standard Cont
	Heat under reflux. Die Arthur a distillation. Heat
	the reaction mixture in a cound-bottom flash at
	Suffire and and soliture branitise to form t-branchestone, which exagorates and condenses and is collected
	n a flast whater bas a boiling point of 100 to so also
	Add. the mixture in the collecting Bask of Add. Separating funnel. The proprior layer should reference
	settle ballow the aqueous layer as it is denser. To confirm, add water to the separating funnel, invect
	the funcel, and allowd the layers to settle. The layer that gets bigger is the aqueous layer. Open the tap and run off the lower organic layer into a conical flast. [6] econome Add deging agent to remove traces of water.
	This candidate was credited 4 marks for this level 2
	answer. Although they have drawn distillation apparatus instead of reflux, they have considered the boiling point
	of the product, detailed using a separating funnel, a

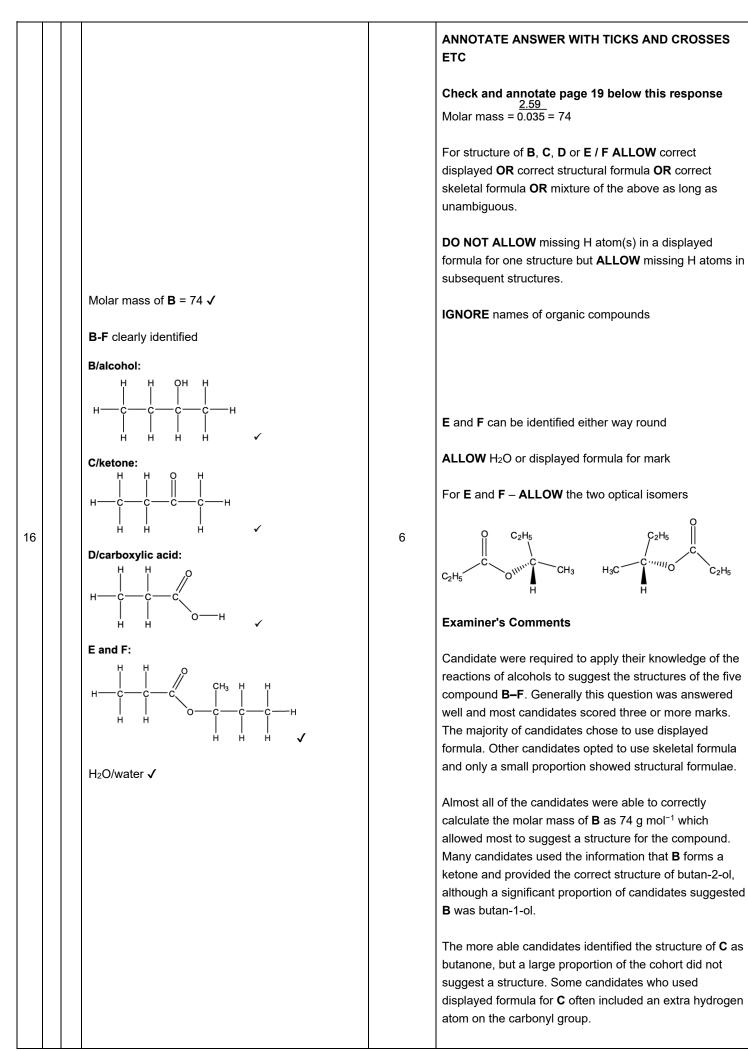
			drying agent and that the lower organic layer would be drawn off first.
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 12.6 (g) award 2 marks • $n(1\text{-bromobutane}) = 0.150 \times \frac{61.4}{100} = 0.0921 \text{ (mol)} \checkmark$ Mass 1-bromobutane = 0.0921 × 136.9 = 12.6 • (g) \checkmark 3 SF required	2	Common errors: 33.4 (0.150 × 100/61.4 = 0.244 × 136.9) 1 mark ALLOW ECF for incorrect moles or incorrect M_r of 1- bromobutane (provided answer is to 3 SF) DO NOT ALLOW 6.82 (using M_r of butan-1-ol) ALLOW calculation using masses, e.g. Theoretical = 0.150 × 136.9 = 20.535 (g) \checkmark (ALLOW 20.535 rounded back to 20.5) Actual mass = $20.535 \times \frac{61.4}{100} = 12.6$ (g) \checkmark (20.5 also gives 12.6) Examiner's Comments This question was well answered, but a significant number of candidates incorrectly used the Mr of butan-1-
	Total	8	ol when calculating the mass of 1-bromobutane.
8	 * Please refer to the marking instruction point 10 for guidance on how to mark this question. (Level 3) Applies knowledge of elimination reactions to provide the correct names and structures of all three alkenes. AND Full, detailed explanation of formation of both types of isomers linked to the reaction, with clear understanding of both types of isomerism. The explanations show a well-developed line of reasoning which is clear and logically structured. The information presented is relevant to the compounds drawn / named. (Level 2) 	6	 Indicative scientific points may include: the elimination can produce a double bond in either the 1- or the 2- position (through combination of the hydroxyl group with a hydrogen from either the 1st or the 3rd carbon) this leads to the formation of structural isomers (pent-1-ene and pent-2-ene) pent-2-ene exhibits stereoisomerism / <i>E/Z</i> isomerism / <i>cis-trans</i> isomerism because it has two different groups attached to each carbon atom there are two possible isomers of pent-2-ene and three in total.
	Applies knowledge of elimination reactions to provide the correct name and structure for pent-1- ene. AND Correct structures of stereoisomers of pent-2-ene but full names missing or incorrect. AND Explanation of formation of at least one type of		pent-1-ene Z or <i>cis</i> -pent-2-ene <i>E</i> or <i>trans</i> -pent-2-ene

		isomers in some detail.		
		The explanations show a line of reasoning		
		presented with some structure. The information		
		presented is in the most-part relevant to the compounds drawn / named.		
		(3–4 marks)		
		(Level 1) Applies knowledge of elimination reactions to name		
		and draw the structures of organic products. Either		
		name OR structure should be correct for two		
		compounds. AND		
		Attempts to explain formation of one type of isomer.		
		The information about isomerism is basic and		
		communicated in an unstructured way. The relationship to the compounds drawn / named may		
		not be clear.		
		(1–2 marks)		
		(0 marks)		
		No response or no response worthy of credit.		
		Total	6	
9	а	Displayed formulae of CH ₃ OH and H ₂ O AND C-O AND O-H polar bonds shown on CH ₃ OH molecule with δ + and δ - AND Both O-H polar bonds shown on H ₂ O molecule with δ + and δ - V Two lone pairs shown on both oxygen atoms AND Hydrogen bond / H-bond labelled and in the correct position between the H on water and the oxygen lone pair on methanol \checkmark	2	Must be displayed formulae Hydrogen bond H \rightarrow H \rightarrow
	b	Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5–6 marks)	6	Indicative scientific points <u>1. Oxidation reaction forming aldehyde</u>

		A comprehensive explanation with all three scientific points covered thoroughly. There is a well-developed description with a logical structure including correct chemical equations and an explanation with a clear line of reasoning including a fully labelled diagram.		 acid / H+ AND dichromate / Cr₂O₇²⁻ heat AND distillation organic product is butanal / CH₃CH₂CH₂CHO CH₃CH₂CH₂CH₂CH₂OH + [O] → CH₃CH₂CH₂CHO +H2O 2. Oxidation reaction forming carboxylic acid
		Level 2 (3–4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with no omissions.		 acid / H+ AND dichromate / Cr₂O7²⁻ heat under reflux organic product is butanoic acid / CH₃CH₂CH₂COOH CH₃CH₂CH₂CH₂CH + 2[O] → CH₃CH₂CH₂COOH + H₂O
		 The description has a line of reasoning presented with some structure and includes correct structural formulae and an accurate diagram of a distillation apparatus. Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points OR The candidate explains one scientific point thoroughly with few omissions. The description may be communicated in an unstructured way but it includes the correct reagents and conditions for the formation of the aldehyde. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks–No response or no response worthy of credit. 		 3. Distillation diagram of apparatus with condenser condenser has water flow collection of organic product product is separated to prevent further oxidation (to carboxylic acid) Examiner's Comment: A very wide range of responses was seen in the second question marked using a level of response mark scheme and a greater proportion of candidates were able to access the highest level in this question. Diagrams of a distillation apparatus were often disappointing and many poor answers failed to identify the oxidation products. A Level 1 response usually named the oxidising agent and included a crude diagram of a distillation apparatus. Diagrams in Level two responses often included more detail with a condenser cooled by water flow and an indication of where butanal can be collected. A Level three response was expected to include balanced equations for the oxidation reactions.
		Total	8	
10	а	$C_5H_{10}O$ + $7O_2 \longrightarrow 5CO_2$ + $5H_2O \checkmark$	1	ALLOW multiples e.g. $2C_5H_{10}O$ + $14O_2 \longrightarrow 10CO_2$ + $10H_2O$ ALLOW any equation involving an unsaturated alcohol

					with correct balancing
					with correct building
					e.g.
					$C_5H_8O + 6.5O_2 \longrightarrow 5CO_2 + 4H_2O$
					$\begin{array}{rcl} C_5H_6O &+& 6O_2 \longrightarrow & 5CO_2 &+& 3H_2O \\ C_5H_4O &+& 5.5O_2 \longrightarrow & 5CO_2 &+& 2H_2O \end{array}$
					$C_5H_2O + 5O_2 \longrightarrow 5CO_2 + H_2O$
					IGNORE state symbols
					Examiner Comments
					The more able candidates were able to balance this
					combustion equation. Those who failed to be awarded
					the mark either used the molecular formula of a saturated alcohol or did not consider the presence of the oxygen
					atom in the alcohol when balancing the equation.
					ALLOW any combination of skeletal OR structural OR
			Diagram showing a water molecule and an ethanol		displayed formula as long as unambiguous DO NOT ALLOW δ+ on H atoms of alkyl group
			molecule with at least one $H^{\delta +}$ and one $O^{\delta -}$ on		
			BOTH molecules √		DO NOT ALLOW any marks for a diagram containing
					O ₂ H
					If more than one hydrogen bond is shown they must all
					be correct to award the mark.
	b	i	Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another.	2	Examiner Comments
			AND		The examiners were surprised that more of the candidates did not achieve both marks on a question that
					many would have experienced before from legacy past
			Hydrogen bonding stated or labelled on diagram √ e.g. Hydrogen bond		papers. Candidates often failed to include dipoles and
					lone pairs even though this was indicated in the stem of the question. Candidates should recognise the
			н — ç — ç — о; ⁶⁺ _ ⁶⁻		involvement of the lone pair in any hydrogen bonds
			$\begin{array}{c ccc} & & \backslash \\ H & H & H^{\delta +} & H^{(\delta +)} \end{array}$		drawn. Where candidates gave more than one hydrogen
					bond in their diagrams they had to be correct for a mark to be awarded.
					Statements MUST be comparative
					e.g. hexane-1,6-diol has two –OH groups and hexan-1-ol
					has one −OH group
			Hexane-1,6-diol has more OH groups (than hexan-		ALLOW hydroxyl or hydroxy
			1-ol)		DO NOT ALLOW hydroxide/OH-
					ALLOW ORA Examiner Comments
		ii	AND	1	The best answers here stated that that hexane-1,6-diol
			(hexane-1,6-diol) forms more hydrogen bonds with		had more OH groups than hexan-1-ol and so more
			water \checkmark		hydrogen bonds could be formed with water molecules.
					Weaker answers did not compare the two compounds simply stating that hexan-1,6-diol had two OH groups or
					that it formed two hydrogen bonds with water.
					Candidates who did include a comparison frequently
					failed to state that solubility was due to hydrogen bonds
					being formed with water.

·		1			
					ANNOTATE WITH TICKS AND CROSSES
					Use of any primary alcohol containing 3, 5 or more carbons can be awarded up to 4 marks.
			Structures of organic products		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
					IGNORE names
			$\begin{array}{c c} H \longrightarrow c \longrightarrow c \longrightarrow c \longrightarrow c' \longrightarrow c' \longrightarrow c' \longrightarrow c' \longrightarrow c' $		DO NOT ALLOW CH ₃ CH ₂ CH ₂ COH for the structure of the aldehyde.
			н—сссс с		ALLOW CH ₃ CH ₂ CH ₂ CO ₂ H for the structure of the carboxylic acid.
	с		Equations CH3CH2CH2CH2OH + [0]	5	ALLOW marks for structures from equations as long as unambiguous.
			\checkmark CH ₃ CH ₂ CH ₂ CH ₂ OH + 2[O] → CH ₃ CH ₂ CH ₂ COOH + H ₂ O \checkmark	-	ALLOW molecular formulae in equations e.g. $C_4H_{10}O + [O] \longrightarrow C_4H_8O + H_2O$ $C_4H_{10}O + 2[O] \longrightarrow C_4H_8O_2 + H_2O$ $C_4H_9OH + [O] \longrightarrow C_3H_7CHO + H_2O$
			Reaction conditions		$C_4H_9OH + 2[O] \longrightarrow C_3H_7CO_2H + H_2O$ IGNORE incorrect structures in equations
			Distillation to produce aldehyde/CH ₃ CH ₂ CH ₂ CHO		i.e. $C_4H_{10}O + [O] \longrightarrow C_3H_7COH + H_2O$ scores equation mark
			AND		Conditions must be linked to aldehyde/carboxylic acid or
			Reflux to produce carboxylic		correct products. Conditions may be written above arrow of equation.
			acid/CH ₃ CH ₂ CH ₂ COOH √		Examiner Comments
					A very well answered question. Candidates had
					obviously been well prepared as even the weakest candidates gained a number of marks here. The most
					common mark lost was a failure to include H_2O in the
					balanced equations. In the preparation of the carboxylic
					acid, a number of Candidates balanced the equation with 2H ₂ O.
			Total	9	
					ANNOTATE ANSWER WITH TICKS AND CROSSES
					ALLOW reference to specific compounds e.g. comparing
					methane and methanol
					Second marking point requires BOTH types of
					intermolecular forces in response i.e comparison of
11	а		Alcohols have hydrogen bonds (and van der Waals' forces) \checkmark	2	hydrogen bonds AND van der Waals is essential
					DO NOT ALLOW the second mark for a comparison of
			Hydrogen bonds are stronger than van der Waals' forces (in alkanes) √		van der Waals' and hydrogen bonds between alcohols and water
					ALLOW more energy required to break hydrogen bonds
					than van der Waals' forces ALLOW it is harder to overcome the hydrogen bonds


				than van der Waals' forces
				IGNORE more energy is needed to break bonds
				Examiner's Comments
				Many candidates attributed the difference in boiling point between alkanes and alcohols to the relative strength of hydrogen bonds compared with van der Waals' forces. Weaker responses simply identified alcohols as being able to form hydrogen bonds, but failed to compare these with van der Waals' forces.
				ANNOTATE ANSWER WITH TICKS AND CROSSES Both answers need to be comparisons ALLOW ORA throughout
		2-methylpropan-1-ol has less surface (area of)		Reference to just surface area / closeness of molecules is not sufficient
b		contact OR fewer points of contact √	2	IGNORE reference to H bonds IGNORE less energy is needed to break bonds
		2-methylpropan-1-ol has fewer / weaker van der		Examiner's Comments
		Waals' forces OR less energy required to break van der Waals' forces in 2-methylpropan-1-ol √		Most candidates recognised that 2-methylpropan-1-ol is branched and communicated both marking points succinctly. Weaker responses identified that 2- methypropan-1-ol would have weaker intermolecular forces, but failed to specify these as van der Waals' forces.
с	i	Elimination OR dehydration √	1	Examiner's Comments Many candidates correctly named the type of reaction. There were a significant number of incorrect responses, the most common of which included hydrolysis, dehydrogenation and condensation.
		IF answer = 14.0 OR 14.1 g award 3 marks		ANNOTATE ANSWER WITH TICKS AND CROSSES
				ALLOW ECF at each stage
				ALLOW 3 SF up to calculator value correctly rounded for intermediate values
	ii	actual $n(C_5H_8)$ produced = $\frac{5.00}{68.0}$ = 0.0735 (mol) \checkmark	3	ALLOW expected mass $C_5H_8 = 5.00 \times \frac{100}{45.0} = 11.111 (g)$
		theoretical $n(C_5H_9OH) = n(C_5H_8) = 0.0735 \times \frac{100}{45.0} = 0.163 \text{ (mol)} ✓$		ALLOW Mass C₅H9OH reacted = 0.0735 × 86.0 = 6.321 (g)

			ALLOW Mass of C ₅ H ₉ OH used = $6.321 \times \frac{100}{45.0} = 14.0$ OR 14 (g)
	Mass of $C_5H_9OH = 0.163 \times 86.0 = 14.0$ (g) OR 14 g OR 14.1 g \checkmark (use of unrounded values in calculator throughout)		ALLOW 2 SF up to calculator value correctly rounded for mass of C_5H_9OH
			Note: 2.84 OR 2.85 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 13.76 OR 13.8 would get 2 marks (use of 0.16 for moles C_5H_9OH) Examiner's Comments Candidates coped well with this calculation based on percentage yield. Most were able to calculate the moles of cyclopentene produced and the strongest scaled this correctly to give the moles of cyclopentanol required. A common mistake was to scale by a factor of 45/100, rather than 100/45. However, error carried forward marks were awarded and the majority of candidates scored two or three marks. Answer: 14.1 g
	Total	8	
12	Compound C: $H = \begin{pmatrix} CH_{3} \\ H = CH_{3} \\ H = CH_{3} \end{pmatrix}$ CARE: Tertiary alcohol Compound D: (repeat unit) $H = \begin{pmatrix} CH_{3} \\ H \\ H \\ H \end{pmatrix} = \begin{pmatrix} CH_{3} \\ H \\ H \\ H \\ H \end{pmatrix} = \begin{pmatrix} CH_{3} \\ H \\ $	2	For structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above Connectivity IGNORE connectivity of bonds to CH3 e.g. ALLOW CH3 ALLOW any vertical bond to OH, e.g. ALLOW OH OR OH I DO NOT ALLOW OH DO NOT ALLOW more than one repeat unit REQUIRED: Side links (dotted lines fine) NOT REQUIRED: Brackets and 'n'
			Examiner's Comments This part was answered well. If a mark was lost, it was almost always due to compound C, especially at the low

					scoring end of the range. Many struggled with the structure of a tertiary alcohol or omitted H atoms from the structure. Compound D was generally drawn correctly by candidates of all abilities. If the mark was not credited, it was usually due to not removing the double bond, or drawing more than one repeat unit.
			Total	2	
13	а	i	Equation $CH_3CH(OH)CH_2CH_3 + [O] \rightarrow CH_3COCH_2CH_3 + H_2O \checkmark$ Structure of product could be allowed from equation $CH_3COCH_2CH_3 \checkmark$	2	ALLOW molecular formulae: C4H10O and C4H8O ALLOW C4H9OH ALLOW C2H5 for CH3CH2 ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments The majority of candidates were able to identify the structure of the ketone formed in the oxidation of butan- 2-ol but many were not able to construct a suitable equation. Water was often omitted from the equation on the right hand side whilst sometimes the equation was incorrectly balanced with a 2 being placed in front of the [O]. The most able candidates normally scored both marks.
		ii	Butan-2-ol/butanone is flammable OR Butan-2-ol / butanone is volatile / low boiling point OR		IGNORE vague answers about health and safety ALLOW alcohol for butan-2-ol ALLOW ketone for butanone
		ii	Butan-2-ol / butanone will evaporate / boil away \checkmark	1	DO NOT ALLOW the product or reactant. DO NOT ALLOW distillation
		11	(Heat under) reflux OR a description of reflux with vertical condenser and a round bottomed or pear shaped flask with source of heat. √	1	DO NOT ALLOW any reference to closed system. Examiner's Comments Another question requiring candidates to evaluate a practical activity where responses were on the whole disappointing. Very few candidates were able to access both of the marks with the harder of the two marks being for suggesting why the apparatus was not suitable for the experiment. Clearly many candidates were able to suggest a better method of carrying out the experiment with reflux being often quoted.
	b		The –OH group is attached to a carbon that is attached to one hydrogen atom OR The –OH group is attached to a carbon that is attached to two C atoms / alkyl groups/R groups √	1	ALLOW alcohol / hydroxyl / functional group for –OH Examiner's Comments The definition of a secondary alcohol was well known

				with most candidates being to express this to gain the mark available.
		Total	5	
14		$H = \begin{pmatrix} CH_3 & CH_3 & CH_3 & CH_3 \\ -C & -C & -CH_3 & H = \begin{pmatrix} CH_3 & CH_3 \\ -C & -C & -CH_3 \\ -C & -C & $	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW any vertical bond to OH, OH OR OH e.g. ALLOW I I DO NOT ALLOW OH– Examiner's Comments Many candidates found it difficult to draw the structures for the two alcohols that could be dehydrated to produce compound A. This was surprising as it was a simple task to add water across the double bond of compound "A" resulting in two branched chained isomers. The most common incorrect answers were pentan-1-ol and pentan- 2-ol, although some candidates shortened the chain length resulting in compounds containing only four carbon atoms.
		Total	2	
15	а	QWC: Evidence of the IR absorption at 1720 (cm ⁻¹) for presence of C=O / carbonyl group \checkmark QWC: No carboxylic acid OH absorption in IR OR no peak between 2500–3300 cm ⁻¹ AND so J is a secondary alcohol OR so K is a ketone \checkmark Alcohol J $H_{H_3C} \rightarrow H_{H_3C} \rightarrow H$	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit BOTH IR at ~ 1720 (cm ⁻¹) AND C=O required ALLOW ranges from <i>Data Sheet</i> , i.e. C=O within range 1640–1750 cm ⁻¹ ; IGNORE any reference to C-O absorption For structures of J and K, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above IGNORE any names given for J and K ALLOW 1 mark for the structure of an alcohol with the molecular formula C ₅ H ₁₂ O DO NOT ALLOW pentan-1-ol (<i>primary and unbranched</i>) or 2-methylbutan-2-ol (<i>branched but tertiary</i>) DO NOT ALLOW any marks for J and K if more than one structure is given for J Note: 'sticks' in either J and / or K will lose only 1 mark

	Equation Balanced equation for conversion of J to K \checkmark e.g. CH ₃ CHOHCH(CH ₃) ₂ + [O] \rightarrow CH ₃ COCH(CH ₃) ₂ + H ₂ O		ALLOW 1 mark for: H_3^{C}
b	Labelled diagram showing at least one H-bond between alcohol molecule and water \checkmark e.g. Hydrogen bond H ₃ C $- C$	1	 IF diagram is not labelled ALLOW Hydrogen bonds / H bonds from text Diagram should include role of an O lone pair and dipole charges on each end of H bond. IGNORE alcohol R group, even if wrong ALLOW structural OR displayed OR skeletal formula OR mixture of the above Examiner's Comments The majority of candidates were able to draw a diagram to show the hydrogen bond between an alcohol and water. However, a significant proportion lacked the accuracy required at this level and failed to show the role of the lone pair. It was also common to see responses that omitted the relevant dipoles. The question asked for the inclusion of relevant dipoles and lone pairs and candidates are advised to double check diagrams to ensure these key features are not neglected.
	Total	7	

				Most candidates were able to suggest a correct structure of carboxylic acid D and therefore deduced that the reaction between B and D was an esterification reaction. The most difficult part of this question was identifying E and F . The most able candidates provided a correct structure for the ester, however some candidates often missed of one of the hydrogen atoms from their displayed formula. The most common incorrect response was to the structure of butyl propanoaoate. Some candidates identified the other compound formed in the reaction of B and D as water but a large proportion gave a second ester. In general the structures given by candidates were accurately drawn but candidates should be reminded to check their work carefully to ensure the correct number of atoms and bonds are present if using displayed formula.
		Total	6	
17	а	$H_{3}C \xrightarrow{CH_{3}}_{B_{r}} \xrightarrow{CH_{3}}_{B_{r}} \xrightarrow{CH_{3}}_{\checkmark}$	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above DO NOT ALLOW molecular formula ALLOW dichloro or diiodo compound instead of the dibromo compound as the only alternatives. Examiner's Comments This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound. All of these responses received credit. A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2-methylbutan-2-ol. Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a).
	b	Reagent A : correct halogen√ e.g. Br₂ / bromine	1	ALLOW C/ ₂ if dichloro compound drawn ALLOW I ₂ if diiodo compound drawn IGNORE state symbols Answer must match box from (a) to score

				Examiner's Comments
				This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit.
				A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2- methylbutan-2-ol. Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on
				part (a).
с	i	Steam AND acid catalyst √	1	 ALLOW H⁺ / named acid / H₂SO₄ / H₃PO₄ ALLOW H₂O(g) ALLOW water only if a temperature of 100 °C or above is quoted. IGNORE any temperature given with steam IGNORE pressure Examiner's Comments One would expect the majority of candidates to do well in a question which required them to state the reagents and conditions required for the hydration of alkenes; however this was not the case. The most able candidates provided accurate responses which referred to both steam and the acid catalyst, which was often shown to be H₃PO₄. Other candidates stated only one of the two required responses and it was common to see the acid catalyst stated alongside a temperature and pressure but with no
				reference to steam. Some candidates stated the reagent as H ₂ O instead of steam and this was allowed if accompanied by a temperature of over 100 °C. Candidates should be encouraged to learn reagents and conditions required for organic reactions.
		(compounds or molecules) having the same		ALLOW different structure OR different displayed formula OR different skeletal formula for structure
	ii	molecular formula but different structural formulae ✓	1	Same formula is not sufficient Different arrangement of atoms is not sufficient Examiner's Comments

				The majority of candidates were able to explain the term structural isomers.
	111	СН ₃ СН ₃ СН ₃ СН ₃ H ₃ C—С—С—Н H ₃ C—С—С—Н H / H / H ОН /	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW any vertical bond to OH DO NOT ALLOW OH– Examiner's Comments Many candidates found this question difficult and a large number of candidates showed structures of alcohols with the molecular formula C ₅ H ₁₂ O, but that could not be formed from 2- methylbut-2-ene. Examples of these incorrect responses included 2-methylbutan-1-ol, pentan- 1- ol, pentan-2-ol and pentan-3-ol. Only the most able could show the structures of both alcohols produced by the hydration of 2-methlybut-2-ene. Candidates should be reminded to check that any structures they suggest are consistent with the context of the question.
	i v	Does not contain OH group(s) OR does not contain hydroxyl group(s) OR is not an alcohol ✓ Does not form hydrogen bonds with water ✓	2	ALLOW ORA throughout DO NOT ALLOW OH ⁻ (ions) / hydroxide (ions) 'Does not form hydrogen bonds' is not sufficient Examiner's Comments The majority of candidates were able to recognise that the key to the solubility of the isomers in water is that they contain the OH group whereas 2-methylbut-2-ene does not. Most candidates scored the second mark by accurately explaining that the OH group could form hydrogen bonds with water.
d		Reagents: Acid / H ⁺ and (potassium or sodium) dichromate / Cr ₂ O7 ^{2−} seen once√ Observations: Orange to Green OR Orange to Blue √ Distillation / Distil produces aldehyde / CH ₃ CH ₂ CHO: √ CH ₃ CH ₂ CHO: √	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW H ₂ SO ₄ and K ₂ Cr ₂ O ₇ ALLOW correct displayed formula OR correct structural formula OR skeletal formula OR a mixture of the above DO NOT ALLOW molecular formulae ALLOW C ₃ H ₇ OH for propan-1-ol in equations DO NOT ALLOW CH ₃ CH ₂ COH for aldehyde
		Reflux (of propan-1-ol) produces carboxylic acid / CH₃CH₂COOH✔		IGNORE further oxidation of aldehyde ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic acid Examiner's Comments

	CH₃CH₂CH₂OH + 2[O] → CH₃CH₂COOH + H₂O ✓		This question differentiated well with some very good answers but also some weak responses. The most able candidates provided succinct and well-structured responses which demonstrated a good understanding of the oxidation of primary alcohols. Frequently, good candidates picked up five or six marks. The most common approach was to state the oxidising agent first and whilst most candidates were able recall that potassium dichromate was required, a significant proportion failed to state that an acid was also needed. Many candidates were able to give the colour change but a large number did not mention this. Candidates often referred to the production of the aldehyde and then the carboxylic acid and the majority of candidates were able to provide the correct conditions for these processes. Providing balanced equations for each reaction proved to be the most challenging aspect of this question. A large proportion of candidates included hydrogen as the by-product rather than water, or specified no by-product at all. Another common error was the incorrect balancing of the complete oxidation equation. A significant proportion of responses did not use the correct amount of the oxidising agent when converting propan-1-ol to propanoic acid. The examiners were encouraged by the candidates' ability to provide correct structural formulae, however some candidates showed the aldehyde group as -COH. Candidates should be reminded that an aldehyde group is expected to be represented as –CHO in this type of formula.
	Total	14	
18 a	F–K clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES
	Compound F:		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	СH ₂ CH ₃ Н с=с н		IGNORE names
	Compound G:		
1 1 1	Ч Ч Ч Ч		
	н—с—с—с—с—он н н н н		

4.2.1 Alcohols

			$H_{3}C \xrightarrow{CH_{2}CH_{3}} H_{H} \xrightarrow{CH_{2}CH_{3}} H_{H} \xrightarrow{CH_{3}CH_{3}} CH_{3}$		
			Compound K: $H \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$		
	q		(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate	3	NOTE: (b) is marked completely independently of (a) ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate Mark second and third points independently of
			Take melting point of crystals Compare to known values		DO NOT ALLOW 2nd and 3rd marks for taking and comparing boiling points OR chromatograms
			Total	9	
19		i	Elimination	1	ALLOW Dehydration
		ïi	Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement	3	ALLOW have the same structure / displayed formula / skeletal formula DO NOT ALLOW same empirical formula OR same general formula Stereoisomers have the same formula or molecular formula is not sufficient Reference to <i>E/Z</i> isomerism or optical isomerism is not sufficient IGNORE names IF skeletal formula is not used ALLOW one mark if both
					stereoisomers of alkene B are shown clearly.

4.2.1 Alcohols

	iii		1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above IGNORE names
	i v	 * Please refer to the marking instruction point 10 for guidance on how to mark this question. Level 3 (5–6 marks) Outlines full details of how a pure sample of B is obtained from the reaction mixture. AND Correctly calculates mass of B Purification steps are clear, in the correct order, using appropriate scientific terms. Calculation shows all relevant steps and mass given to 3 significant figures. Level 2 (3–4 marks) Some details of how a sample of B is obtained from the reaction mixture. AND Attempts a calculation which is mostly correct. Purification steps lack detail, e.g. no drying agent or no explanation of separation, or only some scientific terms used. Calculation can be followed but unclear. Level 1 (1–2 marks) Few or imprecise details of how a sample of B is obtained from the reaction mixture. AND Attempts to calculate the mass of B using mole approach but makes little progress with only 1 step correct. Purification step is unclear with few scientific terms and little detail, e.g. just 'separate the layers and dry'. Calculation is difficult to follow and lacking clarity O marks	6	Indicative scientific points, with bulleted elements, may include: 1. Purification • Use of a separating funnel to separate organic and aqueous layers • Drying with an anhydrous salt, e.g. MgSO ₄ , CaC/ ₂ , etc. • Redistillation Incorrect purification method is NOT worthy of credit. 2. Mass of B obtained • $n(A)$ used = $\frac{9.26}{102}$ = 0.0908 (mol) = theoretical $n(B)$ • Actual $n(B)$ obtained = $n(0.908) \times \frac{75}{100}$ = 0.0681 (mol) • mass B = 84 × 0.0681 = 5.72 g CHECK for extent of errors by ECF Alternative correct calculation may calculate the mass of B as 0.0908 × 84 = 7.63 g, followed by 7.63 $\times \frac{75}{100}$ = 5.72 g Calculation must attempt to calculate $n(A)$ in mol. Simply finding 75% of the initial mass of alcohol A, 9.26, is NOT worthy of credit.
		Total	11	
20		 * Please refer to the marking instruction point 10 for guidance on how to mark this question. (Level 3) Candidate provides a method for identifying the alcohols AND provides all supporting evidence from IR 	6	Indicative scientific points may include Identification of alcohols Based on recognition of alcohols as primary, secondary and tertiary (stated or implied by method). Basic procedure involves reflux followed by use of IR to identify different oxidation products.

spectrum AND gives details of reagents and conditions and correct equations. The explanation is detailed and well structured. The information is clearly supported by details of reactions and evidence of oxidation product. (5–6 marks)		 Reactions stated reagents (H⁺/Cr₂O₇²⁻ and conditions (reflux)) equations using [O] including structural formulae CH₃CH₂CHOHCH₃ + [o] → CH₃CH₂COCH₃ + H₂O CH₃CH₂COCH₃ + H₂O CH₃CH₂CH₂CH₂OH + 2[o] →
(Level 2) Candidate provides a basic method AND provides some supporting evidence from IR spectrum AND gives details of reagents and conditions with some attempt at equations. The explanation has some structure. The information is supported by some details of reactions and evidence from IR spectrum. (3–4 marks)		 CH₃CH₂CH₂COOH + H₂o Identification of oxidation product IR: carboxylic acid from broad OH absorption and C=O IR: carbonyl / ketone from C=O and no OH tertiary alcohol from lack of C=O and OH peak in IR OR no colour change in reflux.
(Level 1) Candidate attempts to describe a basic method AND gives some supporting evidence from IR spectrum OR details of reagents and conditions with some attempt at equations. The explanation is basic and lacks structure. The information is supported by limited evidence from the reactions and oxidation products and would not lead to identification. (1–2 marks) No response or no response worthy of credit. (0 marks)		
Total	6	